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NATIONAL ADVISCRY COMMTITEE FOR AERONAUTICS

TECHNICAL NOTE'NO. 1219

STRESS ANALYSIS BY RECURRENCE FORMULA OF REINFORCED
CIRCULAR CYLINDERS UNDER LATERAL LOADS

By John E. Duberg and Joseph Kempner
SUMMARY

A recurrence formula is developed for the stress analysis of
reinforced circular cylinders loaded i1u tlie planes of their rings.
In contrast to the elementzry englneering analysis, deformations
of ringe and sheet are comsidersd. The recwrrence formula in
conjunctiorn with appropriaste boundary equations can be used to
obtain sets of simultaneous linear algebraic equations. The solu~
tions of these equations enable the stress analyst to find the
shear flows and direct stresses in the sheoeot, as well as the
shear forces, axial forces, and bending moments in the rings.

In order to reduce the amount of computation involved in the
stress analysis of relatively long reinforced cylindeis, an epproxi-
mate method of analysis is presented. In this method the cylinder
under consideration is assumed to be infinitely long, and the
recurrence formule 1s treated as a fourth-order finite-difference
equation. It is recommended thet the approximeite solution be
utilized for the stress analysis of cylinders loaded at rings
located two or more bays from external restraints.

JNTRODUCTTON

Experimental data on stresses in reinforced circular cylinders
indicate the inmdequacy of the elementary theory of bending and
torsion when applied to the relatively flexible shell structures
used in ajrframe construction. Several investlzabors have pre-
sented methods for the stress analysis of cylinders laterally loaded
at the reinforcing rings (references 1 to 3). The theory of refer-
ence 1, developed only for the case of a one bey cylinder, involves
the assumption that stringer strains can be entirely neglected and,
consequently, leads to inaccurate results. The more precise theory
of references 2 and 3, developed for cantlleveroed cylinders having
identical bays, becomes tedious and unwieldy when extended to non-
uniform cylinders. :
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The present paper conbains the development of a general
recurrence formula suitable for the stress analysgis of cylinders
that may be nonumiform in construction, arbitrarily supported at
the boundaries, and arbitrarily loaded in the planes of the reln-
forcing rings. The development is based upon tho maintenance of
continuity of deformntion between the rings and shell. In eny
particular problem the recurrence formula together wlth eppro-
priate boundary equations are ueed to obtain sets of simultsnocous
linear equations for the corrections to the stresses glven by the
elementary theory. (For a cantllevered uniform cylimder the results
obtained in this manner are identical with those obtained by the
moethod of reference 2 or 3.} ' ' '

If 2 cylinder is composed of many bays, as in conventional
fusclage construction, the number of simultencous equations
requiring consideration may beo .prohibitive. For s wmiform cylinder,
however, good approximations to the corroction strosscs can be
cbtained if the cylinder is assumed to be infinitely long. The
recurrence formula for this case is solved as a hcmogeneous finite dif-
ference equation of the fourth order and ylelds a relatively simple solu-
tion. For practical purposes this solution can be applied to .
arbitrarily supported cylinders provided the louds are located a
few bays from externsl restraints. When tho recurrence formula, .
together with the boundary equations presented, is applied to a
cantilevered uniform cylinder discussed in reference 3, good agree-
ment 18 obtained among the recurrence-formula solution, difference- ’
equatlon solution, and experimental strosses. -

SYMBOLS
6s
a2 _ . -
1.3
2
, . - . - -
B - ZLR ' -
GtL2
c function of ring leoading
p = 2" ) '
n o . . .
"n

E Young's modulus



NACA TN No. 1219 3

G shear medulus
H axial force in ring
I moment of inertlia of cross section
L length of bay
M bending moment
MC concentrated ring bending moment
P radial load
Q statio moment about neutral axis of cross-sectional aresa
lying betweer» extrems fiber and _plane under considera-
tion . ) o
R radius of cylint'der' and ring'
tangential load on ring
v shear force -
a, b Fourier coefficiémbs 1n Fourier é;:pangions of gq
c distance from neutral axis = | T |
i, k general mumbers of bay or ring
m designation of rooil:.ba'y; | o :
n generel nuwmber of F.‘ouréler coefficlent |
g shear flow in skin
thickness of skin
N effective sheet thickness, that is, thickness of all

material carrying bending stresses in cylinder if
uniformly distributed around perimeter

u, v, w axial, tangential, and radisl displacements of points
on cylinder

X, ¥, 2 axial, tangential, and radial coordinatos of cylinder
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o erbitrary constent of integration
B =3 4 n2 + 3B
n 38y
2
Y = = + _13.—_:_36?.
n 124y
1

n® (n2 | - l)e

A, B, V. constants dependent upon bay lengths

2
1 -1|8np - 1 ﬁn"‘l\ =
= = cosh - -
Pn 2 ( 2 "/ n

2
o] longitudinal direct stress in skin
0] angular coordinate of polnt on cylinder

1 -1jBp = 1 By + L\ 2
P ST

> _
1 -1iPn -1 1Bn + 1\ 2
X’n—Ecos 2 \[(2 "n

Subscripts:

R rigid

m : moment
T radial

t tangential
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STRESS ANWALYSIS OF REINFORCED CYLIKDERS

Inadequacy of Elementary Thecry

The elemsntary engineering theory for bending and torsion of
reinforced cylinders loaded at the ring relnforcements ylelds the
well-known formulas Mc/I for direct bending stress, VQ/It for
shear stress due %o bending, and T/2At for shear stress due to
torsion (vhere T and A are the torgue on cross section and the
area inclosed by perimeter o¢f cross section, respectively). This
gimple theory is based upon the assumption that radial displace-
ments of both rings and shest can be neglected. Bince the dimen-
sions of most wmcnocoque structures are such that radial displece-
ments of the structural componenta carmot be ignored without
appreciabls insccuracies ixr ke results of analysis, the elementary
theory must be modified &b &3 not only to satisfy the laws of
statics but also to maindein continulty between rings and sheet.
The present development, consequently, 1s dirscted towards finding
self-equilibreting strese distributions that, when superimposed
upon the elementary streass distributions, yield results which, in
addition to satisfylng the laws of statlcs, presserve the continulity
of the sfructure. These correction gtresses are Found from the
recurrence formula that is developed herein. '

Basic Assumptions of Present Theory

In the development of the recurrence formula that can be
used to obtain the desired stress corrections, several simplifying
agsurptlons ars made. That part of the sheet area which is con-
gidered Yo resist normal stresses is added to the stringer ares
and the coambination is uniformly distributed sbout the periphery
of the cylinfer. This resulting combilnation 1s an effective shest
thickness +' <that resists normal stresses. The actual sheet area
is considered capsble of supporting only shear stresses. It then
follows that within & bay the shear stresses vary in the circum-
ferential direction but are constant in the longituéinal direction.
Insxtensional defoimation of rings and sheet is also assumed, and
Poisson's ratio is considered to be zero.

Develomment of Recurrence Formula

Procedure.- For the skin of any bay i of the structure (see

figs. 1 and 2), the corrections to the elementary shesr flow,
direct stress, axial displacemsnt, and radial displacement are
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each expressed as TFourier series with undebermined Fourier coef-~
ficlents. Through static, elastic, and gecmetric conslderations
of rings and sheet, a recwrrence formula is obtained relating the
Fourier coefficient of the shear flow of any bay 1 with the coef-
ficlents of the two bays on each side of bay i, that is, bays 1+l
and 1+2 and bays 1-1l and i-2. Fram the recurrence formula, simul-
tansous equabtions may be obtained from which the values of the
ghear-flow coafficlents are determined., With these values the
loads end stressos in the rings and sheet can be found.

Sheet stregsea and deformations.- The system of coordinate
axes to te used is shown in figures 1 and 2. Positive displace-
ments in x~, y-, and z-~directions are designated u, v, and w,
respectively. For coavenlence, the exhernal loading cn the rein-
forcing rings of a cyrlindeor is considered to be either symmetrical
or anbleymretrical about ¢ = 09, (Soe figs. 1 and 2.) In accord-
ance with tho basic essumptions the correctlions to the elementary
shear flow, direct stress, axlal displecement, and redial displaco-
ment at any polint (xi, cp) in bay 1 cen be expressed for symet-

rical loading as the Fourilor expansions

oo

A .
4,(0) = ) e, sinm (1a)
n=2

B
ci(xi, cp) = Z Gin(xi) cos np (1b)
n=2 '

x®

ui(xi’ cp) = Z uin(’ﬁ) cos ng ' | (1e)
n=2

Wi<xi, cp) = Za win(xi) cos no (1a)
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respectively in which ay,, “in("-i ), uin(:r_l), and Win(’?i}- are
Fourier coefficients. Inasmich as only correctlons to the ele-
mentary stresses and displacements are desired, Fourier terms
corresponding to n =0 eand n =~ 1 are omitted since they corre-
spond to the elementary gtress and, displaeeumnt distri‘bu'bions- :

If antisymmetricsl loading is considered the harmonic func-
tions in equations (1) are rsplaced. by: their coﬂrctions. It is
then convenient to designate the Fouwriler coefficlent of the shear
flow by byp. T e

Relationships among shest stresses aiﬁ dePormations.- Within

any bay 1 the following relationships exist. (fig. )t by the .-
- equll 1orivm equation ' . - e

o agafee Salg) o e e
e, SO0 ?) 4_% a5(@) (28)

.3 \ N
axi

o0

by Hooke's law for direct stress

du; o . o
o (3, CP)"‘= E ulgj%" ) """" R ¢1)
x5
by Hooke's law for eghear stress
ule 1 5"-1_("1: ‘P) +_.a"’1(1’-i’. q’)- S B (2o)
Gy R~ X ox; ’ e
and by the inextensionsl deformation equation {p. 208 of ‘véfer=
ence &)
3vi(Xgs @)
VIV -
—=— - “1("1* ,qp) =0 (2a)
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vhere

ti actual skin thickness of bay 1 .
t'i effective skin thickness of bay i

R radius of cylinder

E Young's modulus

G gshear modulus

Vi (x.l R cp) circumferential displacement of any polnt in bey 1

If equations (la) and {1b) are substituted into eguation (2a)
and 1f coefficients of like cosine terms are eguated, the following
expreggion for the Fouwrier coefficient Uin("i) 18 obtained:

E’c"ingxi) __.n

= Q4n
A t
Bxi Rt',

Integration of this eguation yilelds
Xy
oyn(m) = - R on %4n(0) (3)

in vhich 04,(0) is the direct-stress Fourier coefficient at Xy = 0.

Similarly, elimination of uin(xi) from equations (1b), (lc),
(2b), and (3) and subsequent integration gives

Xy
uin(xi) = = ———ag 4 Ejicrin(o) + Uy {0) (4)
. -

in which u,;,(0) is the axial displacement coefficient at x; = 0.
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"Elimination of vi(xi, cp) from equations (2¢) end (24) ylelds

Beui(xi, t?)

aq)d

oy (x4, @ _ 1 %) a1
Bxi Gty o9 R

Substitution of equations (la), (1lc), (1d), and (k) into this
relationship and integration ylelds the following expression for
the radlal displacement coefficient:

—231,(0) + wy,(0)

in which win(o) is the radial dlsplacement coefflcient of the
sheet of bay i at X = 0. -

Appropriate changes of the subscripts 1 in oquations (3)
to (5) permit the application of the equations to esch bay of the
structure.

Ring deformstions.- The radial displacement £t eny point o
of a symmetrically loaded circuler ring can be exvressed as the
Fourier expansion (seec pp. 208 and 209 of reference 4)

M

(win) cos nQ

[W‘i (o )] ring = ring

n

i

It can be shown by the method -of virtual work (pp. 209 and 210

of reference 4) that for inextensional deformation the radial dis-
Placement coefficient (win)ri 2 for a ring of radius R and
n _

(5)
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constant moment of lnertia Ii . that is loaded by the shear flowas

in bays 1 and 1-1 and by an srbitrary set of symmetrically applisd
external forces is (fig. 1)

h 8in 7 81-1,n 6
:W )ang EL; n( 2 . )2. * G ‘ ( )

In equation (6) the first expression on the right-hand side repre-
sents the part of the radlal displacement cosfficient due to tho
correction shears only, whereas the second expresslon represents

the part of the dlsplacement coefficient due to the extermal loading
and the elemontary shears. Values of C,, aro given later for

particular loadings. (Sce egquatlons (22).)

Continuity relationships.- The following expressions can be
obtained from continuity considerations of the rings and sheet of
bays i-1, 1, and i+l (fig. 1):

01-1,n(L1-1) = cir.l(O) | (7)
f’in(Li) = .°1+;,n(0) (8)
‘ﬁ-l,-n(l'%-l)"-ﬁ vy, (0) (9)
u(%s) ] % 41,500 (10)
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wi-l,n(o) = (Wi-l,n ring )
> (11)
T’Ti--l,n(:r"i--l) = (Win)ring
W’in(O) = (‘Win)r.ing -
> (12)
“1ata) - (ﬁi+i’n)r1ng J
Wi"'l’n(o) - (wi"'l:n)rin‘.? ‘
> (13)
W:’L+l,n(I'1+l) = (wi+2,n ring

Equations (7) to (10) are conditioms of continwity of o and u
across the boundsries between bays i-1 and i1 arnd between bays 1

and i+l. Equations (11) to (13) state that the radial deformetions
of the rings bounding bays i-1, 1, and i+l sare equal to the sheetb
deformations o these bays at the rings. Implicit in eguations (11)
to (13) is a statement of the continuity of w of the cylinder
across the boundaries between bays.

Recurrence formula.- Substitution of the expressions for
cin(xi), uin(::ci), Win(xi)’ and (vin)ring (equations (3)

to (6), respectively) in the continuity relationships (equations (7)
to (135) yields the following seven simultansous equations in
which n=2, 3,’-!-,0--
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-
nly.y
9300 =053 n(0) + —-=83.3 =0
Rt's-1
1
nly
0341,0(0) - 04n(0) +==-asy = 0
1
2 I
-1 1-1
u‘in(o) Y- n(0) + '""rg)i"',""'ai-l n = 501-1,n(0) =0
ZERG $-1 ’
12 Ly
Wi41,n(0) = wgn(0) + P 84n " 'ﬁ"din(o) =0
R* a3ip -1,n nly -3 n3L1~13
EI ’ \2 * c = t -l’n 6m2t H i-l’n
i afn? - 1) 1-1
i) 2 2
n°Ly 7 i-1
tomn O1-1,m(0) + Uy n(0)
¥ a{-1.n " %i-g.n 3 > (14)
+ + Cs .
BT 2 Amdan
1-1 n(n2 - l)
rY  8441.n " Qin nly L .
BT - 2 I+l,n Gt i 2 in
1+l n(nc - l) 6ER t'i
2y 2 2
n°L n 1# Byp = 8s.
4._____}_.0 (0) + (0)+R 1n 1ln . C
ZER in in in
n(n - l,)
R*  &ii2.n 14+1,n . iy yy . L, +l3
~ c it2,n = i+l,n a i+l,n
Blive (a2 - 1) Gy o A
2. 2 2.
n L4 nLy,
Tom Ui+l n(0) + u'i~z-l,1'1(o)
L B* _Z2141,n - &
BT = * Yi4,n
1+ n(ne - l)
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If the six quantities 0,5 (0}, @,,(0), °1+1,n(°)’
2
uy.1 n(0), uyn(0), amd wmyy n(0) are eliminated from the

seven expressions of equations (14), the following recurrence
formule relating the Fourier coefflclents a of five successalve
bays 1s obtzined:

5 .
! [Ul I;3 6By -n"\ Yp

" 83-2,n *84.1.n 1+ * -
Na-1 ’ {_Ii-l I3 6A5 .77 I

v ] IR, = 2 v v *12
1. Y2 I; &8 -3 3 I
" 8yl 1+ + + + 3

I I\ Iin Gay¥ Tia1  BIgAyY

Vg v (By,; - n° Dy
t Byin 2 —(1 5 253 e " 84420 2
’ _Ii+l Li+1 I3 64417 N1

= - - fv V.. { - E_
[Ulci-l,n 17 z)cin + \U2 * U3)Ci+l,n D3Ci+2’r;]Rl"ny (15)

in which

1 (i . Ly-1)
* Li"l2\- Li LS

1/ Dy Tyep )
UQ = f_} + + l
S on B\ T

°3 " - 2(L;-l * l)
I'i+l i :

L

e
I
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Uy = l<i o &2 e LA |

1,2 \L14l  Twad Iy

RO,
A, =

3

I,Ly0

Et 4R
Bi = 8 2

GtyLy o
7 = 2

nZ (n"a' - ZL)a

If the cylinder is of uniform constructiocn, equation (15) can
be considerably simplified and reduces to

81-2,n * 28110 * FPpAyn + PV 8500 0 + 3342 n

- - ' EI
= (Ci-l,n 3Cin * 3Cq1n Ci+2,n) T (16)
RL"ny
in vhich
2
Y = - 2 + n 6B
n 124y
2
B =3+ n <+ 38
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The recurrence formulas (15) and (16) releste the nth sghear-
flow coefficlent of bay i with the corresponding coefficients of
the two bays on sach side’ 'of b:.iy i. One equaticn similar to equa-~
tion (15) or equation (16) can “consequently be written for each
bay of a cylinder, provided that at least two bays exist on each
side of this bay. For antisymmetrical loading, equations (15)

and {(16) can be applied if the Fourier coefficients g are replaced

by the coefficlients b.

Boundary Equstiong

Since the recurrence formula applies only to a ‘bay having two
bays on each side, incomple‘be or boundary equations must be found
for each of the two beys at sach boundary. Boundary equations,
consequently, are presented for bays m and m-1 for a cylinder fixed
at the right of bay m and for bays 0 and 1 for a cylinder free at
the 1loft end of bay 0. (Bee fig. 3.} ' By suiteble combinations of
the bowndary equations and by proper menipulation of the subscripts,
“these equations can be used for the analysis of cylinders fixed at
both ends, unrestrairod at both ends, or u'nrestrained at one end
and fixed at the other end.

Procedure for de:c‘iving boundary oq;uatibns'--"]fhe peneral recur-
rence formula was derived by combining the equations for oy, xi),

uin(xl) wm(xi) and (win) (equations (3) to (6)) with .the_

ring
general.. continuity cond*tions (equations (7) to (13)) and then
eliminating all Fourier coefficients except the a's. In the deriva-
tion of the boundary equations, the defining equations (3) to (6)
are combined in a similar fashion with (1) all of the conbtinuity
conditions (equations (7) to (13)) that do not include quantities
in nonexistant - Days ‘or rings and (2) the bowndary conditions.

Thus, for clamped edges (see £ig. 3) the boundary equation for

bay m ie obtained by combining equations (3) to (6) with the con-
tinuity conditions

“m-l,n(lm-l) =

i
a
£
o
S

1
gj\
o
Qs

um—l,n(l'm-l)- =

Vm-1, a(0) = (Wm-l s n)rin g
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_W [}
V-1 n(Lm l) ( )rin'z
W (0)
- (“&ﬂn)lsing ) o o
and the boundary conditions
()= 0 e
' _aﬂd 'then eliminating all the I"ourier coefficients e,xcept the a's. S
SR Boundary equations for fixed end < If the foregoing procedure
is followed, the boundary equation for bay m (fib- 3) is found to
'be . - . I
. . o .
Im- I
_ : p + T
. Im QA'm-l7 ' m -
; A .:_ - :
r. o
win
EL ALY
) e .
E
= - |p.C -p+p.C]---—- (17}
1l m~1,n 1 2/ mn
in which . "

———
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3
1,2 \Ln-1
Lm+:>
Ln-1

]

and similarly for bay m~1

: -
- aps, (% + oo n _Il*}__é,( In-p  SBpo =27\ ¥5
\lm~2 -2 In-1 6A o7 In-1

' . 2

"~ 8pea = i = €+ 2l ' GBm-l — + ] + i
-1.n - —— ————eeprr
T e Tn Ohp-y7 Tn  Blp-1Pm-?

I~l5 I~l6 SEm - °
1
4 ——— plh_ m-2,n (“h + p.5)C -1,n

+&

+ (u5 + “6>Cm;]£;; (18)
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. 1 [Tpa  Dpeo Lm-2>
'TLm I‘m I&n Ly

For cylinders of uniform construction the f£ixed-end boundary
equations (17) and (1.8) for bays m and m-1, respoctively, reduce to

m-2 n (27 1)a.m_l,n * (aﬁn -2y, - 6)amn
= (%1, Wm)m

®m-3,n * 272 n * EPpfpo1 p (zyn + l)ﬁmn

_ET

Rl'

= (Cm-2,n = 3Cp-3,n + 3€
_ y

—

(19)
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For antisymmetrical loasding the Fowrler coefficlents a in
equations (17) to (19) are replaced by the corresponding coeffi~
clents Db.

ITn order to apply eguations (17} to (19) to the left end of a
cylinder, the sigms of the shear-flow coefficlents rmst be changed
and the subscripts of the varlous terms altered. If the cylinder
of figure 3 1s fixed at the left of bay O, subscripte m, m-1, . « .
ere replaced by 0,1, . . ., vespoctively, for those terms pertaining
to the sheet of the bays and by 1,2, . .. ., respectively, for those
terms pertainlng to the rings.

Boundary equatione for wnrestralined end.- The boundary equa-
tiona for the wnrestrained end of the cylinder shown in figure 3
are also found by followlng ths procedure outlined. The bouwndary
condition at the free eodge is

crOn(o) = Q

The boundary edquatlon for bay 0 is found to be

A 6Bp - 1"\ Ag " Agn”
ao,ql:}-Il + 59 +- (6).11. + — + - 3/\
o\ T o Ty lobe?
le Ao I, 65 -n Ao
-8a —-+—--l+-£:+ + ey | —
1 L\ R &y /] o
-0 - B
= = O = (M * 22)0nq * xzcgn]T- . (20)

R™ny
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In vhich

/;
J\.3 -J—'- -I:'Q-+l
r? \I1

i

Similarly, the boundary equation for bay 1L is

2
Ay Asm Ap I, 6B -n Ay g
-‘aon—n-r +aln-—-l+-—+ + o=

- Eecm - (’ve + ’”u)czn + ML ;-- (21)
_ 1y
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vhere
1
Ry, T
L
Lylo
5 L02 I‘l
L
:Ll2 Ly

For ¢ylinders of wniform construction the wurestrained-end

boundery equations (20) and (21) for bays 0 and 1, respectlvely,
are

. ~
. BI
(27n + Eﬂn + l)aOn + (27n + l)aln + 8o, = - (COn - EC] + Can);—l-‘;;-

BI
27 8on *+ 2Pyfan + 2V 8py + 8gy = (cQn ~ 3Cy, + 30pp - cm);_

: Por antisymmetrical loeding the coefficlentzs a are replaced
by b in equablons {20} to (22). In order to apply equatlons {20)
to (22) %o the right end of a cylinder, the signs of the shear-
flow coefflicients must be changed and the esubsciipts of the various
terms suitably altered. . .

Speclal boundary equatiors.- The boundary equations developed
are sultable for cylinders having fomr or more bays. For the
speclal case of the center bay of a three bay cylinder, the boundary
equation, which depends uponh the conditions at both boundaries, can
also be found by means of the general procedure previously outlined.

The boundsry equations for cylinders of ons or two bays can be
similarly derived.

(

2)
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Application of Recurrence Formula and Boundary Equations

Specific loadings.~ As mentioned previously, the stress

analysis of a reinforced cylinder arbitrarily losded in the planes
of the rings can be carried out conveniently if the stresses caused
by the symmetric and antisymmoetric components of the extermal
forces are suitably combined. Further simplification of -the
analysis is obtalned if the loadings are resolved inlo concentrated
raidial forces, concentrated tangential forces, and concentrated
bending moments. For each ring loasded at ¢ = 0° (see fig. L) the
load function Cy,, obtained in the derivation of eguation (6)

foxr <?in)ring’ for a concentrated radial force, a concontrated

tangential force, and a concentrated bending momont are, respoc-
tively,

P42 gty
Tin R EIy

Ctin "R _ . e - {23)

. Mci(ne ) _1)_ Rny

e EL,

where P, T, eand M, ere the symmetrical radial loed, the anti-

symmetrical tangential load, and the antisymmetrical bending-moment
load, respoctively, acting on any ring 1 at ¢ = 0°.

Simmltencous equations.~ A typical set of equations applicable
to a cantilevered uniform cylinder with six bays (m =5 in fig. 3)
is presented in teble 1. The filrst two and last two rows wore
obtalned from the unrestrained-end and fixed-end bowmdary relation-
ships of equations (2¢) and (19), respectivoly, end tho inter-
medlate rows were obtained from the rocurronce formula of oqua-
tion (16). For a nonuniform cylinder theso oxpressions are
replaced by those of egquations {20), (1), (18), (17), end (15).
It 1s to be noted that the coefficients of the unknown a's
and b's are indopendent of Cyn (load texrm of cquatioms (23));
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consequently, numerical solution of the eguatlons (reference 5)

for various loadings is greatly facilitated. A sot of simultaneous
linsear squations slmilar to that of table 1 must be solved for
each n~value chosen. The number of n~-values requlred depends upon
the desired accuracy. The Fowrier coefficients obtalned for &
given load P, T, or M, at @ = 0° can be used to determine

the coefficionts for similar loads at any other value of ¢ since
the z~axis (fig. 2) can be chosen to coincide with any radius.

Stresses and loads in cylinder.- After the coefficients a
and b are computed, substitution in the formulas (Al) to (AL)

" presented. in appendix A enables the stress anclyst to compute the
shear flow in the actual sheet, tho direct stress in the fictitlous
sheset, and the moments, shears, and axiel forces in the rings. The

" stresses due to loads acting at several rings cnd at various values

of @ c¢2n be superimposed to give the stresscs caused. by these

loads scting simultancously.

APPROXIMAE METHOD OF ANALYSIS BY SOLULION
OF FINITE DIFFERENCE EQUA‘.’L‘ION

Difference-Equation Solution for Infinitely Long Cylinders

Equation (15) referred to previously as a géroral recurrence
Tormuls is also a fourth-order finite difforence equation with
variable coefficlients. BSlnce the variable coefficients prohibit
the solubtion of this oquation in cloped form, only the solution of
the equation thet pertains to a uniform cylinder is discussed
herein. A general procedure for solving the fourth-order finite
difference equation with constant coefficients (see cquation (16))
is presented in reference 6. Whon tho right-hand side of cqua-
tlon (16) is sot equal to zero, the following homogeneous equatilon
is obtained: R

ai"'E,n + ‘27nai_,l’n + EBnain + 27nai+l’n + 51+£’n — 0 (2}-})

From reference 6, the general solution of this homogeneons equation
consists of tl)m following six Indopendent solutions: for
(Bn - 2)
D, =2 5 >1 and 7, <0
"n
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for

ain

NACA TN No. 1219

e "k

(m].n cos k’)(;n+ @, 8in k’)(.n)

Yk ,
+ e (m3n cos k:')(,n+ @, sin lcxn) {25a)

Dn>l and 7, >0

a.’Ln=(

- & ‘
-1)%e Yo (u‘ln cos k'x,n+ o, sin k:')('n)

+ (-J_)ke%k(a?’n cos _k’)(.n+ @, §in k'X,n) (25b)

for D, <1 and 7, <0

for

for

for

8in

= k
e O (uln cosh kpn + O ginh kpn)

'\l_.' k .
+ e B (“3n cosh kp + @y  sinh kpn) (25¢)

D,<1 and 7, >0

o
]

pw
i

_ (-1%k "!’nk y -
8y = (-1) %o (d‘ln cosh kp  + o, sinh kpn)

r k ’
+ (-1) ko' (a,3n cosh kp_ + o5  einh kpn) (254)

1l &and 7n<0

84n

==

_e-\lfnl_:(cr,h + -ocznk) + e‘pnk(cl:gn + ;xqq_nk) (250)

1l and ')’n}O

Qin

(—l)ke-wnk(‘ooln + a.ank) + (-J.)ke\ynk@?)n + d’hnk) (25

f)
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in which

H-E-
]
INET
Q
Q
o]
(a3
1
l—J
ol
'.:S
/—-\
o B
+
l—J
o
1
b N

=2
[n}
]
M-
O
l
o)
™
b
o
n =}
+
I._I
\.—/
F‘ o

k=i=0,l,2...

end o ., Gonr  %ps and o, are arbltrary constants.

The analysis of a uniform cylinder that extends longitudinally
to infinity in both directions from & loaded ring is readily carried
out with the aid of eamations (16), (24}, and (&5)., If the loaded
ring is considered to be a boundary between tile two halves of the
beam end 1f no load other than that at the boundary is assumed to
act, the difference equation (16) with the right-hand side set
equal to zero applies equally well to voth parts of the cylinder
(see fig. 5); conseaquently, only one-balf of the cylinder need be
conslidered in the analysis, Since the difference equation
applicable is the homogeneous equation (21t), equations (25)
together wlth the appropriste howmdary conditions are solutions of
the ypressnt problem.

The distortions caused by the concentrated load. have no effect
on the stress distribubtion in the cylinder at k = o3 -bherefore,
B = 0. The first term on the right-hand side of each of equa~

tions (25) satisfies this condition; howsver, the second term does
not satisfy this requirement and, hence, must vanish. The solutions
then that are compatible with the boundary condition at infinity

are from equations (25): for D >1 and 7,< 0

i - nk@f,ln cos k')(,n+ Gy sin k’X,-n) (26&)-
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for

Tor

faor

for

boundary equations applicable to the present problem.
load function at the loaded ring is designated (g, (see equa-

tlons (23)) and equation (16) is written for bay O, the first

NACA TN Ko.

D, >1 and 'rn>0

D, <

D, <

o
]

ay, = (-l)ke—\pnk(&t}n cos k’Xh+ o, 8in k?(*n)

1 and 7n<0

<Yk ' .
8y = © (“'l.n cosh kpn + Cop ginh kpn)

1l and 7n>0

vk .
(-l)ke Vo (Lxln cosh kp, + O, 8inh kpn>

ain

1 and 7n<0

84n = e-wnk(“’.tn + ;2111:)

1 and 7n>0

SCI A CR)

From the conditlons of symmetry about the loaded ring,
modification of eguation (16) leads to the determination of two

boundary equation is

(_apn - 27, Yag, + (:—:yn - l)aln +ay = =30y, <

If the

1219

(264)

(26e)

(26f)

(27)
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= - ‘8, = - . ' 1%t
since a,, = -a_,, emd aj, 8, If equation (16) .:Ls written
for bay 1, the second boundary equaticn is seen to be

Zy - l)a + 2B 8, + 27 a, + &8, = Ch —— ©(28)
( n A°0n n 1ln n 2n 3n | an“n'r

glnce a = =g «
On -ln

The boundary equations (27) and (28) permit the determination
of the arbitrary constents Ty and -Cn, - For a given valus of n,
substitution of the appropriate value for a;, from equations (26)

into equations (27) and (28) yields a sot of two simltaneous equa-
tions; for example. if D >1 and 7, < 0

=4

%[(2[311 - Eyn) + (Eyn - l)e—\hn cos Y + 6 B cos Z,X’n]

. _\y _24,
+ %n{(”n -1 “einX,+e ®sin 2%4: - 3Cgp, ﬁi;

: (29)
J

' . - -2y -3V ‘I
Sy - o n v n of n
“m]_(f7n 1) +2B0 ocos Y, +27e cos B +e cos 3%, |

S
.Y 2y R " BT
+ m2n<25ne D gin ’X,n+ E’rne gin Z% ot © sin :,'X,n = Cyp ﬁ;

The constants & and O, are obtained fram the solubion of

these equations. To each value of n there corrogponds one value
each for Ly and oy * Since Dj and 7, eare funchtlons of n as
well as the elastic properties of ths cylinder, for a particular

cylinder more than one of equations {26) may bb6 required for the
determination of all the values of o, aad O"Zn’. Wigh the values

of these constants determined for each value of n, corresponding
values of a;, for each bay are cbtained from equaticns (26).
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As in the application of the recurrence formula, a's corre-
sponding to several harmonice, that is, n varylng from 2 to the
value that ylelds the desirod accuracy, must be found. For anti-
gymmetrical loading, & 18 replaced by b in equations (2h)
to (29). The values of the coefficients a and b obtained are
substituted in equations (Al), (AZ2), and (Ah) for tho desired load
values. Since the expression for the direct stress 1in the sheet
now involves an infinite swmation along the cylinder of the shear-
flow coefficients, simplified Tormulas for the direct stresses at—
any ring k are presented in sppendix B.

Tf equations (27) and {28) are replaced by the unrestrained-end
boundary equations (22), with all values of C,, except Cpp set

equal to zero, a tip loaded cylinder extending to infinity in one
direction can be analyzed with a procedure similar to that developed
herein. '

Applicetion to Finite Cylinders

Whereas a concentrated load causes distortion in the region
in the immediate vicinity of the load, for most practical purposes
the part of tho cylinder e few bays away from the load csn be
agsumed. undisturbed. Consequently, i1f the load is located a
sufficlient distance from external restraints, the distortions of
the cylinder in the region of the load are independent of these
rostraints. If then a wniform cylinder of finite lemngth is to bo
analyzed and this cylinder is losded in a manner such that the
load is not in the proximity of an exbernal restraint, the ele-
mentary stresses and loads are found &8 usuel by considering the
cyllander to boe finite, whereas the correctiome may be found by
use of the difference-eguation mwethod by considering the cylinder
to be infinito. Bocezuse the effoct of the concentrated load
dlssipates quite rapldly, valusg of d and b are usually of
inteorest only for those bays in the vicinity of the load. The
deslired forces and moments in this region can thon be determined
as before from the equations giver in appondixes A and B.

Adequacy of Difference-Eduation Solution

Although the solution in closed form of the problom of a
uniform reinforced circuler cylinder ims exact only for infinitely
long cylinders symmetrical about a loadod ring, comperisons of the
finite-difference~oquation solution, the recurronco-formula solution,
the standard solution (reference 7), and sxporimental data For
cylinder 2 of reference 3 wore made fdr a cylinder Tixed at one
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end, unrestrained at. the other, and” havin.g only Four 'bayb. The
cylind.er ams loalled  with a. concentrate& radial: force E'b a ring
located: two. bays from each end. ' (See"fig, 6.) In" figures T and 8
curves" are given fo# bending momehts 1% -he - oad.ed ring and. aa.Jacen'b
-rings as vgll.as.for the shear flows in- the'~ uwo ’bays ad;;acent to
the loaded ving.. -Inasmuch as the gylihder contdifis relatively
few bayd; an extreme case is represented tna'b is anlikely 1:0 e’
met i practice. . The more bayd a- cylina.er hag the more closely
it approximates an infinite cylinésr for wh* ch ‘f:.he finite-difference~
equation golution is exact; co‘nsequently, “the- 500& agreement shown
in figures.T7.and 8 among the" f;nite-diherencemq_uétion solution, :
. the recurrence-~formnla solvtion ‘and” experi]ﬂe*xt&l da‘té 1nd.ica'bes
that the s:lmplified solution is: qui‘be adeq_uate. L . ,

ot - o i ..
ot 1 P

Ad.vaﬁtages of Difference-Equa'bion Solution

Since airplane fuselages approximatl no circalar cylind,ers ére
composed of a relatively-large nuwiber: of - b.:ys “For’ most practical
cases, the eimplified sdlution.should be a good approﬁmation to
that obtained by the use of the recurrence formula. As mentioned .
previously, when the recwrrence formulas is applied, sets of
gimultaneous equations containing as many unknowns as there are
bays in the structure must be solved for eaclhh n-value required.

For structures having many bays the amount of computations involved
may be prohibitive; however, no such computations are involved when
vee 1s made of the infinite-cylinder solution. In addition, this
solution is adaptable to the construction of design charts similar
to Wise's charts of reference 7. The analysis of any long uniform
cylinder is dependent only on the values of the structural
paremeters A and A/B. For various representative values of
these parameters, chartes can be constructed from which the analyst
can determine desired stress coefficients. For extreme cases, such
as a cylinder loaded only one to two bays away from a restraint,
the recurrence-formula method is recormended for accurate solutions.’

CONCLUDING REMARKS

The recurrence formula developed in the present paper faclli-
tates the stress analysis of circular cylinders loaded in the planes
of the reinforcing rings. The cylinders can be composed of bays
of different cross sections and lenghhse and can be supported by
rings having different moments of inertia. The boundary equations
bresented are applicable to cylinders fixed at both ends, unrestrained
at both ends, or wnrestrained at one end and fixed at the other end.
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‘For tHe analysis of cylinders compoged of relatively: few
bays, 1t"is recommendéd that. the recurrence formula:be used to. ' -
obtaln getsiof simultandows linear algebraic-equations. -The- .
“golutiong of these equaticis lead:touan accurate: determination of
the .dtresses: in the rines and sheet of-the cylinders. The anslysis
of cykindérs:composed of many bays, és are. semimdnocogue fuselages,
can more ‘conveénlently be accemplished by tie molution of -the .
recurr¥ence ‘formula.ds a finite.difference eguation. .- Although the
- gtresfSes. obtdiried with -this .solutien’are approximetions to.-the
more: accurate strosses -found with the simultaneaus. eguatione, Ffor
long.éylinders the_computations involved are  congidérably shorter.
In addition, isincé for the three ‘basic loads tiie. stresses .determined
by this method are dependent only upon the structural ‘parameters
of the cylinder, charts facilitating the rapild determination of
the gtresses in reinforced cylinders can be readlly constructed.

[ T

Langley Merorial Aeronauticdl Lebormtory .- -~ il ol i B _
--National Advisory Committee fox: Aerodaubics = .: . ' . oo, -—
« ' Lengley Field, Va.,' Novembex 12, 1946 . :iovo: /& v
: - o - , -
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APPENDIX A
FORMULAS FOR LOADS ARD STRESSES IN CYLINDERS

APter the coefficients a and b are computed, the shear
flows in the actual sheet, the direct stresses in the fictitious
sheet, and the bending momen‘bs, shears, and axial forces in the
rings can be found with the aid of the equations. given in the
appendix of reference 3. For the sake of completeness these egqua-
tions, with some additions, are presented hersin.

Shear Flow

The total shear flow qi(cp) in any bay i for any ring
loading on a cylinder can be expressed as

(=] [o=]
Qi(CP) = g + E: a;, sin mp + Z by, COS NP (A1)
n=2 : n=2 -

in which N represents the elementary shear flow calculated on

the basis of rigld rings. For a cantilevered cylinder, a4 is

zero Tor those bays located between the tip and a loaded ring. For
those bays between a loaded ring and the root, the vglues of qR

for a radial load P, a tangential load T, and a concentrated
ring bending moment M,, each applied to ring i at ¢ = 0°, are

given in table 2. Positive forces and bending moments are indi-
cated In figure 4. If more than one ring is loaded or if the

cylinder is not of cantilever construction, Py, Ti’ and Mci
are replaced by the resultant radial, tangential, and moment load,
respectively, acting on a cross section of bay i.

Direct Stress in Sk:ln
For a cantllevered. cylinder such as that shown in figure 3,

if the longitudinal skin stress at ring O is assumed to be ZOro,
the direct stress at rinr 1 is (see equations (1b) and (3))
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[>2]
1N\ Iy Ly-1
n=

-]-'-Z by —— b L1-1 nsein np (A2)
R Ont'+ln N S Y Sy s

in which OR is the stress glven by the simple engineering theory

of bending. Since the shear stress 1ls constant in the longitudinal
direction within & bay, ¢ ~variles linsarly between rings.

If the cylinder is rigldly fixed at ring O as weil as at

o

ring m+l, the initiel boundary stress Z o'On(O) cos np (for

n_._ .
symuetrical loads) must be added to the direct stress obtained. with
equation (A2). The value of the Fourler coefflclent oon(0) is

determined for a cylinder having at least three bays from the con-

tinuity condition
Wa {ln )} = (W
and the boundary conditions

Uon(0)

Ml
(@)

WOn(O) =

!
(@)

together with the defining equations (‘j). and (6). The relationship
obtained is : '

2LoA "oy 6By - n* ET
.'o'on(o) ='_1-?_'b—’—g— - aonl+' O“ +aln+—}—cln (A3)
o™ § SN R'ny
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in vhich
r6s 1
Al =
0 3
Iko
For antisymmetiical loading, ao_'l and aln are replacsd

by bOn and by,, respectively.

Bending Moments and Forces in Ring

The bending mouments. shear forces, and axial forces in the
reinforcing rings of a cylinder arbitrarily supported at its ends
are, respectively,

o o - B
- EZain'ai-ln . gzbin-bi-in
M = M +R L n(n2 - 1)L cos no - K - n(ne - 1>’ sin ng
= - Z Zin ~ f3-1.n - Z bin " Pi-1n ,
V=V - R L (n2 - l) sin np R.n:}2 (n2 - l)’ cos np P (ak)
= nfa,, - a ) — C5 b )
H = R \in “i-1,n -R 2\Pin " Pi-1,n
1 HR + L (na - l) oS P éz (1.,_2 i 1) sin nqi

in which M, Vp, and Hp are the bending moment, shear force,

and axial force in the rings, respectively, Getermined on the basis
of elementary shear flow in the skin. DPositive values of the bending
moments and loads in a cylinder are indicated in figure 4. Formulas
for NgR, VR, and -Hp corresponding to a radial loed P, a tan-

gentlal load T, and a concentrated ring bendinz moment Mc, sach

applied to & ring 1 at @ = O°, are glven in teble . For rings
not loaded extermally, only the series expression in equations (Ak)
are required.
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APPENDIY. B
DIRECT STRESSKES IN INFINTTELY LONG CYLINDTRS

For the determination of the direct stress in the skin of a
wniform infinitely long cylinder, equation (AL) cen be replaced

by

= k
=0 )
o, (0 = Op & a,. n cos B1)
100, @) =og ¥ == ) 1 o (
n=2 i=co
or
iy %0_ k-l
L ' L
oi(o, Q) = op *+ vl 2_ /. % ” Z &8..] n cos op (B=)
n=t 1=0 i=0

in vhich only the coefficlents 840 are considered. In these
equations, ai(o: ®) 1is the direct stress at »~ing i=k. Corre-
sponding to the six valves of a, ~from equations (6), six
solutions for o¢;(0, @) can be determined vy svmmation along the

cylinder. As an illustration of the procedwre iavolved, equa-
tion (=6a) is used herein for the velus of a,.+ Conseguently,

equation (B2) becomes

o (O, o) —O'R-i-'.é%z N ‘Wn‘c(aln eo8 L.'X, vy B0 kY, )
=2 i=0

k-1

- Z e"‘l’ k(aln cos ki + @ min Iz'x.._l):}n cos ng (B3)



The cummatlions from 1 =0 %o 1=w end 1=0 t%to i=%k~1 are readily accomplished with
the ald of formilas 6.830, 6.833, end 3.51, mmbers 1 and 13, of refersnce 8. The resulting
formula for the direct streas at any riny, I is for Dn > 1, 7. < 0, and 1i=k=0,L%2 .., .

ST2T *ON NI VOvN

’ 1 . \m— -\I,nklaln!;a‘l!n cos k'){,n-cos (k-1) Xr:l +y [e-‘yn sin k.X.n-sin (k-1) ‘X,J
0'1(0, ¢)=UR+.EE'-/ e = n cos I
- l. e !.:' . . -n:.é : coah \Ijn ] coﬂ ‘xn. |

(k)

With a procédure analogous +o that used for the determination of this equation, the followlng
solutions are obtained for the direct stresses correcponding to the remaining five values of ay.:

for Dn>1 and '.Yn>0

Gt



m [

L T __‘{llnk @]nlﬁﬂhcos ICK + COB(k'l)x +d,cn|_ D'Sin kxl 4 Biﬂ(k 1)%]3'

o
ui(o,cp) =0p+ (-1) :-:ﬂ:t;—'/ ) = _ 1 n cos np (BSa)
nar cosh ¥ + cos 'X,n

for- Dn< 1l and ‘fn< 0

‘ !
(0.0) 1, \%ﬂ" W 1 %p | e LY kp, - cosh(k-1)p ]4‘%[9%5113]1 kpp, - BiDh(k-l)pn‘l )
0 0, P} =0pt+t——, ® =~ n cod B5b
319 =R kiRt'é cogh \{fn - cosh p e (

for D_ <1 and 7_ >0
n n )

® ¥ i : i L
1, -~ ko [e cosh kp.+cosh(k=-1) pn] Wﬁn[’ ginh kp +SlIJh(k“1)pJ
a,{0,9) =ag+ ( ‘l)k_——TZe o _In - - 2 5 cos np (BSc)
. "o ) cosh ¥ + cosh o
for Dy =1 ami 7,<0 . -
7 I - -
= . ( -l)+m~lka\¥n-(k-l)‘
9;(0,0) = a5 + LA \l&‘k ‘o' ik — n co8 np . (B5d)
Rt ‘:-—,. cush v -1 .
ne=g n
for Dn=l and ')’n>0
w Wiy ) [
T (e + 1 ko' & 4 (k - 1)
a:(0,9) = op + ("ZL)k L% . Vs o Teny : = n co8 nQ , (BSe)
i R ERt' L -
- cosh Vn +1

If the cosfficients b, are consifered, cos o 1is replaced by -sinnp in equatioms (B1)
to (BS).

9¢
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TABIR 1.- CENMRAL SCHEME OF ZQUATTONS FOR UWIRORM CYLINER (F SIX BAYS

Laft-hand sids Right-hemd aide
{2) 3.
CoefTiol .
(1)” "on fin | %20} ;| S Ben 1 (Toed term)
Equatian bon b § Bag|bs| Bag Lo Ragial Tangantial Peanding moment
; BE : .
0 AR A L AT B e B e o e m) T -(To-ﬂl-l-!!a)!"a (% - 2+ 3) = 21
. A
1 27, 28 |er ] 1 |- smsemarennen- P~ 3P -p)2 -, AR - £ -1
- n | a (R0 = 2y + 3 - 1) (B LR 0 B IR CRE R R &
e e - ST JPRRE 21
2 1 A Y o R Rt (B R ¥ 3y~ B 2l (T - Ha + 3y -y o | (g - B 43 - ) pe
. . ) n-. ’ 1 . . . 2..‘-1
3 punne IR % K™ B r (Pn'3P3+3P;."_.P5)-E (Tz"ﬂs*?}'fj);g '("E'_?"s”%'"ﬁ)n—;ﬁz
" 1e %) e}u ‘B -sp, + 3 ) 2 IR T A .- + -1
To| n BBy | (=g P o 35) =2
S Sl b el R LA R B G ) (% - b . W) T
Iooetfictonte a apply to radicl losds; coafficleats b 4o tangential ar bending-moewnt loads.
2gysbols s defioad, in equation (16).
3oynbols ere dafined in equation (£3).
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TABIE 2.- ELEMRNTARY SEEARS, HENDING MOMERD'S, AND YOADS IN CYLINDER
CORRBSPONDING TO BASIC RING LOADINGS

31gn convention shown in fig. 4
[ ]

81327 "ON NI VOVN

External
loading k! HR r HR
at ¢ = 0°
P B4R P r 3
1 1 cos @ i|ein @ - Jil o ]
= =il 4 ~——= ~ (x - —= - (x cos @ —Hx-@) 8ln @ += cos @
P — s e 2‘[+ > " (x-9) aincp] 2'[2 (x - 0) ] » 2

i R T T
T —-;:;(%+005€P) -Ei'-lgx-fp)(l-cosq)) "/gainlp_ -éi-lgt-qa) qu,_z‘_’_ﬂg_i_] E—ilf—i:—@-(t-w) cos@J

Hciain
o—— q
R

Mo, - = E;—[(a-tp)—aamq:] -%(1+2m¢) -

NATTONAT, ADVISCRY
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Figure |.— Part of typical cylinder.
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Figure 2.~ Coordinate system for typical bay.



NACA TN No. 1219 Figs. 3,4
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Figure 3~ Side view of cantilevered cylinder.
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Figure 4.- Sign convention used In analysis.
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Figs. 5,6 - - - NACA TN No. 1219
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Figure 6.~ Side view of cylinder 2 andlyzed in reference 3.
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Figure 7.— Comparison between cdlculated and experimental ring-bending
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